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The entropy of binding between 
vacancies and solute atoms in harmonic 
lattices-computer experiments in linear 
and square lattices 
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Department of Meta/ Science and Technology, Kyoto University, Kyoto, Japan 

Entropy changes related to point defects within the high-temperature limit have been 
studied, on the basis of exact frequency spectra obtained by computer calculations, for 
linear and square lattices in the light of lattice vibration in the harmonic nearest-neighbour- 
force approximation. 

The binding entropy of a vacancy-solute pair is independent of the solute mass but 
depends on the force-constant around the defect, whereas the entropy change due to 
substitution by a solute atom is dependent on the solute mass as well as the force constant. 
For square lattices, the displacement amplitude of atoms has been shown in connection 
with the localized or resonance mode, which may have implications for solute diffusion. 

1. In t roduct ion 
Current theory of solute diffusion in metals 
requires that vacancies have some interaction 
with solute atoms. Such interaction affects the 
formation and migration of vacancies in metals 
depending on the valence, the atomic size and 
other characteristics of the solute atom. The 
interaction can be described in terms of the 
binding free energy, or the binding energy and the 
binding entropy between a vacancy and a 
solute atom. Because of the significance of these 
parameters, many experimental and theoretical 
investigations have been carried out on the 
binding energy [1], but very few on the binding 
entropy [2-4]. 

There have been reported two experimental 
methods which can give the binding energy as 
well as the binding entropy correctly, at least in 
principle. One is the measurement of the 
equilibrium concentration of vacancies in dilute 
alloys by means of simultaneous measurements 
of the linear dilatation and the lattice parameter 
change of a specimen [2]. The other is to deter- 
mine the binding entropy from the resistivity 
measurement of quenched dilute alloys, which 
has been suggested by Takamura et al [3]. 

*Now at Hitachi Research Laboratory, Hitachi Ltd, Japan. 
�9 1973 Chapman and Hall Ltd. 

Vineyard and Dienes [5] have pointed out that 
the formation entropy of a point defect consists 
only of the vibrational entropy change and the 
term arising from the temperature-dependent 
part of the formation energy can be excluded. In 
the same sense, the binding entropy of a vacancy- 
solute pair can also be determined from the 
vibrational entropy change, i.e. the change in 
the frequency spectrum which is to be observed 
when free vacancies are bound to solute atoms. 

Therefore, the entropy change related to the 
formation and the association of point defects is 
given by the vibrational entropy change, which is 
described within the high-temperature approxi- 
mation by 

AS = - k ~ ln(o~,/~o0, ) , (1) 

where k is the Boltzmann's constant, and c~ 0 
and ~o are normal mode frequencies of the lattice 
before and after the change of state. In the 
harmonic lattice, the vibrational frequencies 
can be expressed simply by the interatomic force 
and the atomic mass. In a real crystal the 
frequency spectrum is changed with the ten> 
perature through the anharmonicity, hence the 
vibrational entropy change could be tern- 
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perature-dependent. For simplicity, however, the 
anharmonicity is not taken into account in this 
paper. 

The present paper primarily aims at knowing 
the change in the entropy when vacancies are 
associated with solute atoms, with particular 
reference to the change in the atomic force and 
the solute mass. For  this purpose, computer 
calculations are made of the exact frequency 
spectra in linear and square lattices containing 
vacancies and solute atoms in the nearest- 
neighbour harmonic approximation. The calcu- 
lation method used for linear lattices is the one 
originally suggested by Dean [6] and modified by 
Rosenstock and McGill [7]. For  square lattices, 
eigenfrequencies and the belonging eigenvectors 
of the dynamical matrix of a system are directly 
calculated by means of  the "threshold Jacobi 
method".  Therefore, for square lattices not only 
frequency spectra but also vibrational amplitudes 
of atoms are obtained, which may give useful 
information on the solute diffusion. 

o n-2 n-I rl rl+l N+I 
. . . . . .  Yn-i 7n ~n+l .... 

Mn-2 Mn-i Mn Mn.l 

Figure 1 A linear lattice composed of N § 2 atoms with 
fixed ends. Each atom is coupled to its nearest neighbours 
by elastic springs obeying Hooke's law. Mn is the mass of 
nth atom, and Vn denotes the force constant of the spring 
coupling atoms n - 1 and n. 

2. Frequency spectra in one- and two. 
dimensional lattices 

2.1. One-dimensional linear lattice 
A linear chain of N + 2 atoms with fixed ends is 
shown in Fig. 1, in which each atom is coupled 
to its nearest neighbours by elastic springs 
obeying Hooke's law. When the nth atom of mass 
M,, is displaced from its equilibrium site by 
Un( t )  at time t, the equation describing the 
vibrational motion is given by 

Mn d 2 U ~ ( t ) / d t  2 = 7~ {U~_t(t) - U~(t)} 
+ )'~+1 {Un+l(t) - U,(t)}, (2) 

where ~,,~ is the force constant coupling atoms 
n - 1 and n.  
By assuming the simple time dependence for the 
displacement as 

U~( t )  = U,~ exp ( -  icot) , (3) 

Equation 2 can be written in terms of the time- 
independent displacement amplitudes as 
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~'~ U n - 1  + (co2 M , ,  - ~'~ - ~ / n + l )  U n  

" J c ] l n + l g n + l = O ( H  = 1,2 ,3  . . . .  N) ,  (4) 

with U o --= Ui,r+l ~ 0 .  Let displacements be 
U 0 = 0  and U l = a  (a is any real number), 
then for a given co, displacements for the suc- 
ceeding atoms, U.,, U s ,  �9 �9 �9 Ulv + 1, are calculated 
in succession. The values of  co which make 
UN+I zero are the normal mode frequencies in 
the lattice. 

Numerical calculations of exact frequency 
spectra in linear lattices by means of  high-speed 
computer were first carried out by Dean [6], 
followed by similar work thereafter [8, 9]. 
Rosenstock and McGill [7] have proved that the 
sequence of displacements U1, U2 . . . .  UN+I 
forms a "Sturm sequence" and therefore 
"Sturm theorem" [10] holds; the number of 
sign-changes in this sequence for a given 
squared frequency co~ gives the integrated 
frequency spectrum, L(co~), which is the number 
of  normal modes of  the lattice whose frequencies 
are smaller than its argument. Once the integrated 
spectrum has been determined, the squared 
frequency spectrum, D(coe), can be obtained by 

D(co ~) dco 2 = L(co 2 + dco ~) - L(co~), (5) 

where D(co 2) dco 2 is the number of normal modes 
whose frequencies lie between co~ and co2 + dco2. 

By use of this procedure, frequency spectra 
for linear lattices containing point defects were 
computed. The point defects introduced into the 
lattices are solute atoms, vacancies and vacancy- 
solute pairs, whose models are shown in Fig. 2. 
Open circles denote host atoms of mass M, and 
solid circles solute atoms of mass M'. The force 
constant coupling two adjacent host atoms and 
that connecting a host atom and a solute atom 
are denoted by 7 and 7', respectively. A vacancy 
is at the middle of two atoms connected by the 
dotted line, and the force constant coupling two 
atoms through a vacancy is expressed by 7v or 
7v' for a free vacancy or a solute-bound vacancy, 
respectively. 

The squared frequency spectrum for the 
perfect lattice of 2000 atoms is shown in Fig. 
3a. This has the symmetric U-shaped form 
represented by D(coe)=NTr -1 [ c o 2 ( c o m 2 - - c o 2 ) ] 1 / 2  , 

where corn is the maximum frequency of the 
perfect lattice which is given by corn 2 = 4~/M, 
and throughout this paper M and ~, are taken to 
be unity. The spectrum for a lattice containing 
100 vacancies is shown in Fig. 3b, where 
~'v = 0.5. The presence of vacancies reduces 
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Figure 2 Point defects in l inear latt ice: (a) solute atom, 

(b)  vacancy,  a n d  (c) vacancy-so lu te  pairs .  A vacancy is 
located at  the middle  o f  two a t o m s  connec ted  wi th  a 
dashed line. 

the high-frequency mode and makes the spec- 
trum jaggy. 

Figs. 4a to d are the spectra for different mass 
ratios in the lattice with randomly distributed 
200 isotopic solute atoms. In order to avoid the 
interaction between solute atoms, they are distri- 
buted at least three atomic distances apart from 
each other. The mass of solute atoms is different 
for each spectrum but their distribution is all the 
same. The effect of solute mass on the spectrum 
is clearly visualized in these figures; in the lattice 
with light solutes (Fig. 4a) the so-called localized 
mode with frequencies higher than the maximum 
frequency of the perfect lattice has appeared with 
the intensity corresponding to the number of 
solutes concerned. The localized mode frequency 
for a light isotopic impurity (M > M') is 
theoretically given [11] by ~os 2 =  COm2/[1- 
{ ( M -  M')/M}2], which agrees with the fre- 
quency corresponding to the sharp peak in the 
figure. In the lattice containing heavy solutes 
(Figs. 4b to d), the spectra are slightly shifted, 
in average, to the lower frequency side, and are 
getting more jagged for heavier solute atoms. It 
should be also noted that special or forbidden 
frequencies [12] at which the spectrum vanishes 
are observed for the case of heavy solutes. 

The spectra of lattices having 100 vacancies as 
well as 200 isotopic solute atoms are shown in 
Figs. 5a to d, where vacancies are distributed 
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Figure 3 The  sq u a red  f requency  s p e c t r u m  for  the  2000 
a t o m s  l inear  lattice: (a) perfect  lattice, (b) a lattice 
con ta in ing  100 vacancies,  where  M = ~, = 1, ~,v = 0.5. 

not to occupy the nearest-neighbour site of the 
solute atom. The spectra are slightly shifted to 
the lower frequency side and become less jagged 
compared with those in Fig. 4, but no remarkable 
change in the shape of spectra can be seen. Figs. 
6a to d are the spectra of lattices containing 200 
isotopic solute atoms and 100 vacancies, 50 of 
which are paired with solute atoms. For heavy 
solutes, very little difference is seen between the 
spectra of Figs. 5 and 6, while for light solutes 
there appear remarkable changes; when vacan- 
cies are bound to light solutes, the intensity of  
localized modes ascribed to isolated solute 
atoms is reduced and as much, the new localized 
modes arise from the solutes associated with 
vacancies whose frequencies lie between ~Om 
and O)s. 

2.2 Two-dimensional  square  lattice 
As the model of two-dimensional crystaIs 
containing point defects, are chosen square 
lattices with the nearest-neighbour harmonic 
interaction. In these lattices it is assumed, for 
simplicity, that atomic motions in x- and y- 
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Figure 4 Frequency spectra for the 2000 atoms linear 
lattice containing randomly distributed 200 isotopic 
solute atoms, whose mass ratios M']M are (a) k, (b) 2, 
(c) 4 and (d) 8, respectively. 
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Figure 5 Frequency spectra for the 2000 atoms linear 
lattice containing 100 vacancies (~,v = 0.5) and 200 
isotopic solutes whose mass ratios M']M are (a) �89 (b) 2, 
(c) 4 and (d) 8, respectively. 

directions are independent so as to be separately 
treated. 

Consider  a square lattice with n x n vibratile 
lattice points with fixed boundaries (Fig. 7), in 
which each a tom is connected to its nearest- 
neighbours with central and non-central  har- 
mon ic  forces. In  this model  the t ime-dependent 
equat ion  o f  mot ion  in the x-direction o f  ith 
~ttom at an inner site is given by 

m i U i  = 
7e(i, i - n )  {Ui-n -- Ui} + ye(i, i-q-n)( U~+n - Ui} 

- [ - ' ~ n o ( i ,  i - -  I ) { U i -  1 - -  Ui} 
4- yne(i, i + 1){U,+I - U~}, (6) 

where ~,e(i ]) and ~'ne(i,j) denote the central and 
non-central  force constants,  respectively, acting 
between a pair  o f  a toms i and j ,  which are 
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symmetric with respect to i and j .  For  a toms near 
the boundary ,  this equation becomes slightly 
modified. 

Equat ion  6 can be written in the time inde- 
pendent  form, by using Equat ion 3, as 

co2M~U~ = - ye ( i ,  i - n ) U _ .  - yne(i, i - a)U~_a 
+ {Te(i, i - -n)  + ye(i, i+n)  

-k yne(i, i --  1) + 7ne(i, i +  1)} Ui 
- 7he(i, i +  1)Ui+l - 7e(i, i+n)  Ui+, .  

(7) 

The set of  Equat ions 7 can be expressed com-  
pactly in matrix notat ion by 

(Moo ~ - (I)) U = O, (8) 

where M is the n ~ • n ~ diagonal matrix repre- 
senting masses o f  atoms, (I) the n 2 x n 2 force 
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Figure 6 Frequency spectra for the 2000 atoms linear 
lattice containing 200 isotopic solutes and 100 vacancies 
50 of which are located at nearest-neighbour sites of 
solute atoms (~,v = 7v' = 0.5). 

constant matrix which is symmetric, and U the 
n 2 dimensional column vector denoting the 
x-component  of  displacement of  atoms. The 
elements of  the force constant matrix are given 
explicitly by 

~ , ~  = yc(i,  i - - n )  + 7e(i, i + n )  h 
+ 5'he(i, i-- 1) + 5'he(i, i+  1), 

q) ~ ,~n  = qS~• i = --~,o(i, i ~ n ) ,  
r  i • = ~5i • = -- ~,~c(i, i •  1), 
~ = 0 f o r j = / : i , i ~  1, i •  

(9) 

With a little algebra one obtains 

(I~o 2 - D ) M i U  = 0 ,  (10) 

where I is the n 2 x n 2 unit matrix, and sym- 
metric matrix D = M - i O  M -~ is called the 
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Figure 7 The site labelling scheme for the square lattice 
having n x n lattice points. 

dynamical matrix of the crystal whose elements 
are given explicitly by 

D~r = (M~ M~) 4 ~ i j .  (11) 

I t  is understood f rom Equation 10 that the 
squares of the normal mode frequencies are the 
eigenvalues of  the matrix D and the mass- 
modified displacement amplitudes, M~U, are the 
eigenvectors of the matrix. The same type of  
equation can be composed for the y-component.  

The method of calculating the frequency 
spectrum of the two- or three-dimensional lattice 
was developed by Dean and his collaborators 
[13, 14], and Payton and Visscher [9], which is 
based on the negative eigenvalue theorem intro- 
duced by Dean and Martin [13]. In the present 
work, however, eigenvalues and eigenvectors of  
the dynamical matrix have been directly cal- 
culated by means of "threshold Jacobi method" 
on the digital computer FACOM 230-60 at 
KUDPC.  This is because the limited capacity of  
the computer with respect to the number of  
memories as well as the computing time allows 
us to treat only a small crystal composed of  a 
small number of  lattice points, say, n = 10. 
Furthermore, exact eigenvalues are needed in 
order to obtain the exact vibrational entropy of 
the system. 

The model of defects introduced is illustrated 
in Fig. 8, in which open circles denote solvent 
atoms, solid circles solute atoms, and vacant 
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Figure 8 Point defects in the square lattice. Open circles 
denote host atoms, solid circles solute atoms and vacant 
lattice sites vacancies. 

lattice sites vacancies. The force constant 
connecting two adjacent host atoms is denoted 
by l'e or ~ne for the central or non-central force, 
respectively, and that joining a host and a solute 
by ye' or )'he'. Here it is assumed that at a vacancy 
all the springs are completely cut off and also 
that any relaxation of atomic configuration 
around it does not occur. For  simplicity, two 
parameters ~ and /3 are adopted, which are 
given 

(12) 
The squared frequency spectrum, D(o~2), for 

the perfect square lattice is shown in Fig. 9, 
where in (a) a is 1, (b) �89 and (c) �88 The maximum 
frequency is given by 

~om ~ = 46,e + ~,ne)/M = 4~,e(1 + ~)/M. (13) 

Taking M and l'e as unity, the values of Wm 2 
become 8, 6 and 5 for ~ = 1, ~-, t and �88 respec- 
tively. The spectrum for ~ = 1 (Fig. 9a) is 
symmetric to the middle of the allowed fre- 
quency range, and has the maximum at the 
centre in contrast with the case of one- 
dimensional lattice. For the case of c~ < 1 (Figs. 
9b and c), the spectrum is expected to have two 
main peaks which, however, are not clearly 
observed in the figures presumably because of the 
smallness of number of lattice points. 

Figs. 10(i), (ii) and (iii) represent the effect of 
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Figure 9 Squared frequency spectra for the perfect square 
lattice of 10 x 10 atoms. The ratio of the non-central 
force constant to the central force constant, % is 1 for (a) 
�89 for (b) and ~c for (c), respectively. 

the mass of isotopic solutes (/3 = 1) in lattices 
having (i) six solutes, (ii) six solutes and four 
vacancies and (iii) two solutes and four pairs of 
vacancy-solute, respectively. In each case mass 
ratios M'/M are (a) �89 (b) 4 and (c) 8. In the 
case of light solutes (Figs. 10a of (i) to (iii)), there 
can be seen localized modes referred to as P1 and 
P2. Mode P1 is associated with isolated solutes 
and P2 with solutes bound to vacancies. On the 
other hand, in the case of heavy solutes (Figs. 
10b and c of (i) to (iii)) there appear resonance 
modes indicated by P3 and P~, whose frequencies 
are lower for heavier solutes. Modes P8 and 
/'4 correspond to isolated solutes and solutes 
bound with vacancies, respectively, but un- 
fortunately/ '4 is too close to P3 to be separated. 
Fig. 11 shows the effect of the force constant 
ratio in a lattice containing two isolated solutes 
and four pairs of vacancy-solute. For  small force 
constant ratios localized modes do not appear 
in spite of the light mass of solutes (M'/M = 0.5), 
instead, resonance modes come out (see peaks 
P~ and P4 in Fig. l l a  for /3 = 0.1). For  larger 
values of/3, however, localized modes do appear 
and their frequencies become higher as the 
value of/3 increases. 

The emergence of localized and resonance 
modes is closely related to mass ratio M'/M and 
force constant ratio/3; for smaller mass ratio or 
greater force constant ratio the frequency of the 
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localized mode  becomes higher, while the 
resonance mode  frequency is lowered for larger 
mass ratio or  smaller force constant  ratio. It  is 
also unders tood that  the frequency of  resonance 
modes or localized modes arisen f rom solute 
a toms associated with vacancies is lower than 
that  f rom isolated solutes. 

I-- i p 3 (b)M'/M = 4 
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~- M = 8  
3 
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4 ~ o  4 8- 
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( i) 6S (ii) 6S +4V 

(a) 

~P,  
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P~P~ n 

i i  

0 4 8 
60 2 

(iii) 2 S + 4 V S  

Figure 10 Squared frequency spectra for square lattices 
of c, = 1 containing (i) six solute atoms, (ii) six solutes and 
four isolated vacancies, and (iii) two solutes and four 
pairs of vacancy-solute, respectively. Solute atoms are 
isotopic (i.e. /3 = 1), and their mass ratios are taken as 
(a) ~-, (b) 4 and (c) 8. P1 and P3 denote the localized and 
resonance modes, respectively, arisen from isolated 
solutes, and P2 and P4 those from solutes bound with 
vacancies. 

It is also interesting to know the displacement 
ampli tude of  a toms in square lattices. Fig. 12 
shows the atomic displacement for the x-com- 
ponent  in arbitrary units which corresponds to 
the four normal  mode  frequencies for  the per- 
fect lattice o f  ~ = 1. It  is clear that  the low 
frequency mode has the long wavelength and 
a toms vibrating in this mode  m o v e  in co-opera-  
t ion with surrounding atoms, whereas a toms 
vibrating in the high frequency mode move in 

P4P3 
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Figure 11 Squared frequency spectra for square lattices t,f 
= 1 containing two solute atoms and four pairs of 

vacancy-solute. The solutes have force constant ratios 
/3 = 0.1 ,-~ 8 and mass ratio of M ' / M  = �89 P1 and P~ 
denote the localized and resonance modes, respectively, 
for isolated solutes, and P2 and P~ those for solutes 
bound with vacancies. 

the opposite direction to each other. In any case, 
however, a tomic displacements have point  
symmetry to the centre o f  the crystal. Fig. 13 
shows the displacement o f  a toms in a lattice 
containing vacancies, which has no remarkable 
difference f rom that  of  the perfect lattice. 

Atomic  displacements in a lattice containing 
vacancy-solute pairs whose frequency spectrum 
was given in Fig. l l a  are shown in Fig. 14 for six 
normal  mode  frequencies. The frequency, co 2 = 
0.463 96, is the one belonging to resonance mode  
P4, i.e. the mode  associated with solute-vacancy 
pairs; solute a toms located at nearest-neighbours 
of  vacancies have large amplitudes. On the 
other hand, for  frequency co 2 -=- 0.791 86 belong- 
ing to resonance mode P3, the isolated solute 
a tom shows the large amplitude. The mode with 
frequency co 2 = 0.69965 which lies between the 
above two resonance modes has also large 
amplitudes for  both  kinds o f  solutes. The force 
constants a round  solutes are taken as so small 
(/3 = 0.1) that for  high frequency modes such as 
those with frequencies co2=  4.11172 or  co2=  
7.06487 the amplitude becomes very small at the 
site of  solute atoms. 

Fig. 15 indicates the atomic displacement in 
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a lattice containing isotopic light solutes 
( M ' / M  = 0.5, /3-- 1), whose frequency spec- 
trum was already shown in Fig. l le. The first 
two low-frequency modes are inband modes, 
which show no singularity around defects. The 
mode with frequency co ~ =  8.18829 is the 
localized mode, P2, arisen from solute atoms 
associated with vacancies, while the localized 
mode with frequency 0) 2 = 9.71621, P1, is the 
one from isolated solutes. It is clearly seen that 
the displacement amplitude in these localized 
modes is large at the site of solutes and rapidly 
decreases with increasing distance from the 
solute. 

~ 2 = 0 . 7 7 1 2 9  

w 2 = 6 . 1 4 0 5 5  

w 2 = 4 . 0 0 0 0 0  

w 2 = 7 . 8 5 7 9 7  

Figure 12 Atomic displacements in the x-direction for the 
perfect square lattice of c~ = 1, in arbitrary units. See also 
the frequency spectrum shown in Fig. 9a. 

3. Vibrational entropy change due to 
point defects 

By knowing the normal mode frequencies 
themselves or frequency spectra in lattices 
containing point defects, the vibrational entropy 
change on introducing or forming the defects 
and on binding of them can be evaluated. 
Equation 1 is rewritten as 

A S  = S - So = - { k ~ ln(oJ~2/Wo~2), (14) 
with 
S = - �89 k ~ In ~oi 2 = - �89 k j'D(w2)lno~ 2 do) 2 . 

(15) 

For simplicity, term S is defined as the vibra- 
tional entropy of the lattice, Sp as the entropy of 
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w 2 = 6 . 0 8 8 8 2  
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w z = 7 . 6 1 7 1 2  

Figure 13 Atomic displacements in the x-direction in the 
square lattice containing four vacancies, in arbitrary 
units. 

the perfect lattice, and Ss, Sv, Sv+s and Svs the 
entropies of lattices in which solute atoms, 
vacancies, vacancies and isolated solutes, and 
vacancy-solute pairs are introduced, respectively. 

Entropy changes due to the substitution by a 
solute, ASs, the formation of a vacancy, ASv,  
and the association of a vacancy with a solute, 
ASvs B, are calculated in linear and square 
lattices having the nearest-neighbour harmonic 
force, with particular reference to the solute 
mass and the force constant around defects. 
These entropy changes are defined respectively 
by 

ASs = (S~ - Sp)/n~, "l 
A s v  = ( S v -  sp)/n~, ) ( 1 6 )  
ASvs ~ = (Sv+s - Sv~)/nvs, 

where n is the number of the defects specified by 
the subscript. 

3.1 One-dimensional linear lattice 
In Fig. 16, the entropy change due to substitution 
by a solute atom is shown as a function of the 
mass ratio and the force constant ratio. It is 
clear that the change in the force constant is 
more effective for the entropy change than that 
in the mass, and as easily understood, the mass 
and the force constant act in the opposite 
direction in such a way that heavy mass or weak 
force constant increases the entropy change and 
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m 2 = 0 . 5 2 6 9 6  

~ 2 = 0 . 6 9 9 6 5  

w 2 = 4 . 1 1 1 7 2  

w 2 = 0 . 4 6 3 9 6  

m 2 = 0 . 7 9 1 8 6  

w 2 = 7 . 0 6 4 8 7  

Figure 14 Atomic displacements in the x-direction in the 
square lattice containing two isolated solutes and four 
pairs of vacancy-solute, in arbitrary units. See also the 
spectrum shown in Fig. l la .  ~o ~ = 0.46396 is the reson- 
ance mode frequency arisen from solutes bound with 
vacancies (mode P4), and o~ z = 0.79186 is that from 
isolated solutes (mode P3). 

vice versa. The  ca lcula ted  values are  well 
represented by  the fo rm 

ASs  = �89 k l n ( M ' / M )  - k i n ( 7 ' / 7 )  �9 (17) 

Fig. 17 shows the en t ropy  change for  the for-  
ma t ion  o f  a vacancy.  The values a re  larger  when 
the force cons tan t  a round  a vacancy,  ~v, is 
smal ler  and  are  expressed by  the fo rm 

A S v  = -- �89 k ln(yv/7) �9 (18) 

In this figure a negat ive value is shown for  the 
case o f  ra t io  7v/) '  being greater  than  uni ty  tha t  
may  no t  be pract ica l ,  a l though  the increase in 
the force cons tan t  a r o u n d  a vacancy  in some 
symmet ry  d i rec t ion  has been suggested by Land  
and  G o o d m a n  [15]. 

Rega rd ing  the en t ropy  change for  b ind ing  
between a solute and  a vacancy  (Fig. 18) with 

w2 = 0.72910 

w2 = 8.18829 

w 2 = 4 . 0 1 9 0 4  

co 2 = 9.71621 

Figure 15 Atomic displacements in the x-direction in the 
square lattice containing light isotopic solutes and 
vacancy-solute pairs, in arbitrary units. See also the 
spectrum shown in Fig. l lc .  oJ 2 = 8.18829 is the localized 
mode frequency arisen from solutes bound with vacancies 
(mode Pz), and o)~= 9.71621 is that from isolated 
solutes (mode P1)- 

1.0 

0.5 

I I t 
2 4 8 M6 

- 0 . 5  

( k )  

ASs 1.5 

M ;~ W" 

Figure 16 The entropy change due to the substitution by 
a solute atom in a linear lattice. 

which the present  au thors  are much  concerned,  
it  has been made  clear  tha t  the b inding  en t ropy  
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(k) 

ASv 1.0 

i O ~  ~ t 
0.2 0.5 2 4 

t 
Figure 17 The formation entropy of a vacancy in a linear 
lattice. 

(k) 

~xsg 
0.4 

i'  0 , y "  i I 
0.5 / 1  1.5 2 

/ / ~'/r" . 

/ ~  -0,2 

-0.4 

Figure 18 The entropy of binding between a vacancy and a 
solute atom in a linear lattice. Note that the entropy is 
independent of the solute mass. The range of scatter of the 
values is due to different combinations of solute m a s s e s  

and force constants. 

change is independent of  the solute mass but is 
affected by the change in the force constant, a s  

expressed by the following relationship 
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ASvs B = � 89  �9 = �89 �9 

(19) 

In Fig. 18 is indicated the range of scatter of the 
calculated values which is due to different 
combinations of solute masses and force con- 
stants. 

3.2 Two-dimensional square l a t t i c e  

The entropy of the two-dimensional square 
lattice is calculated from eigenfrequencies them- 
selves of  the dynamical matrix by use of Equa- 
tion 15 as 

I x-comp y-comp 

The entropy change for substitution by a solute 
atom, ASs, is shown in Fig. 19 as a function of  
force constant ratio /3, where mass ratio M ' / M  
is taken as a parameter. Each curve is found to be 
fitted completely with that for M ' / M  = 1 by 
shifting it parallel to the ordinate, having the 
form 

ASs = k ln(M' /M) + f(o~, /3) . (21) 

H e r e f i s  a monotonically descending function of  
and/3, which cannot be analytically expressed 

in a simple form. Function f is positive when 
/3< 1, zero when /3---1, and negative when 
/3 > 1. Since the function depends very little on 
~, only the case for ~ = 1 is shown in the figure. 
In two-dimensional lattices too, as in linear 
lattices, the value of A Ss increases with increasing 
the mass ratio and with decreasing the force 
constant ratio. 

The vacancy-solute binding entropy, ASvs B, 
is given in Fig. 20, which is also a descending 
function of c~ and/3 like the function f ,  and also 
little depends on cc Binding entropy ASvs ~ 
changes its sign at/3 = 1 f rom the positive to tlze 
negative as the value of /3 increases, and is 
independent of  the solute mass. 

4. Discussion and summary 
Entropy changes related to point defects within 
the high temperature limit were investigated for 
linear and square lattices in the light of  lattice 
vibration in the harmonic nearest-neighbour- 
force approximation. The entropy changes were 
derived from the computer calculation of exact 
frequency spectra. The computer experimental 
results about the entropy changes were found to 
have the following tendencies. 

The entropy change due to substitution by a 
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(k) 

AS s 
6 -  

M'/M =4 

M'/M = ' " . 0 . ~ . ~ . ~ . . ~ , ~  4 -  

�9 I I I I I l L l l  

- 4  

- 6  

-81 
Figure 19 The entropy of  substitution by a solute a tom in 
the square lattice. The curves are completely fitted with 
each other by shifting parallel to the ordinate. 
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Figure 20 The entropy of binding between a vacancy and 
a solute a tom in the square lattice, being independent of  

the solute mass. 

solute atom, ASs, is expressed by the sum of 
two terms, i.e. a mass dependent term and a 
force constant dependent term (Equations 17 
and 21). The mass dependent term has the form 
(n/2) k In(M'/M)where n = 1 or 2 for one- or 
two-dimensional lattices, respectively. The force 

constant dependent term is a descending func- 
tion of force constant ratio /9, and changes its 
sign from + to - at /3 = 1 when /3 increases 
(Figs. 16 and 19). 

The binding entropy between a vacancy and a 
solute atom, ASvs B, is independent of the 
solute mass, but depends on the force constant 
around a solute and a vacancy before and after 
binding (Figs. 18 and 20). Consequently, the 
binding entropy ASvs B becomes zero in such a 
case when only the solute mass is varied without 
the change in the force constant, i.e. when the 
solute is isotopic. 

All the tendencies stated above may presum- 
ably hold also for three-dimensional lattices. In 
fact, this expectation is proved to be true, as will 
be published elsewhere. 

Useful information on the vibrational pro- 
perties has been obtained from the frequency 
spectra as well as the displacement amplitudes. 
It is particularly interesting that new localized 
or resonance modes are observed when isolated 
solutes are bound to vacancies (Figs. 6, 10 and 
11) at which the displacement amplitude of  
solutes is extremely large in the specific modes 
(Figs. 14 and 15). This may give an important 
implication to the problem of the solute diffusion 
which is governed by the vacancy mechanism, 
as described in the following. The diffusion rate 
is proportional to the jump frequency j in unit 
time as j oc v e x p ( - G n / k T ) ,  where v is the 
vibrational frequency of solute atoms and G D 
the activation free energy for the solute diffusion. 
As the value of v through which solutes diffuse 
via vacancies, the vibrational frequency of 
solutes bound with vacancies should be taken 
instead of that of isolated solutes. In this 
respect, the localized or resonance mode fre- 
quency arisen from solute-vacancy pairs becomes 
important for the solute diffusion, particularly 
because of the largeness of the displacement 
amplitude of solutes in these modes. 

In the present calculations, the atomic relaxa- 
tion around defects was not considered. Even 
if the relaxation is taken into account, the 
equation of motion remains unaltered as long as 
the change in the atomic interaction is mostly 
confined within the first nearest neighbours, and 
therefore the above results are still valid. How- 
ever, when the relaxation causes a substantial 
change in the force constant beyond the first 
nearest neighbours, more parameters are needed 
but the trend may not be far from the present 
results. 
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